MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. S43940 Stainless Steel

C62400 bronze belongs to the copper alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 14
21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 420 to 440
310
Tensile Strength: Ultimate (UTS), MPa 690 to 730
490
Tensile Strength: Yield (Proof), MPa 270 to 350
280

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
890
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 59
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 53
38
Embodied Water, L/kg 400
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
86
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
200
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23 to 25
18
Strength to Weight: Bending, points 21 to 22
18
Thermal Diffusivity, mm2/s 16
6.8
Thermal Shock Resistance, points 25 to 26
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 82.8 to 88
0
Iron (Fe), % 2.0 to 4.5
78.2 to 82.1
Manganese (Mn), % 0 to 0.3
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0.1 to 0.6
Residuals, % 0 to 0.5
0