MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. S66286 Stainless Steel

C62400 bronze belongs to the copper alloys classification, while S66286 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 14
17 to 40
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
75
Shear Strength, MPa 420 to 440
420 to 630
Tensile Strength: Ultimate (UTS), MPa 690 to 730
620 to 1020
Tensile Strength: Yield (Proof), MPa 270 to 350
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
920
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 59
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 27
26
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.2
6.0
Embodied Energy, MJ/kg 53
87
Embodied Water, L/kg 400
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
190 to 1150
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 23 to 25
22 to 36
Strength to Weight: Bending, points 21 to 22
20 to 28
Thermal Diffusivity, mm2/s 16
4.0
Thermal Shock Resistance, points 25 to 26
13 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 16
Copper (Cu), % 82.8 to 88
0
Iron (Fe), % 2.0 to 4.5
49.1 to 59.5
Manganese (Mn), % 0 to 0.3
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5
Residuals, % 0 to 0.5
0