MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. SAE-AISI 8740 Steel

C62500 bronze belongs to the copper alloys classification, while SAE-AISI 8740 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is SAE-AISI 8740 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.0
11 to 23
Fatigue Strength, MPa 460
270 to 350
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 410
370 to 400
Tensile Strength: Ultimate (UTS), MPa 690
580 to 670
Tensile Strength: Yield (Proof), MPa 410
380 to 570

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
410
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 47
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
2.6
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.5
Embodied Energy, MJ/kg 55
20
Embodied Water, L/kg 410
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 750
390 to 850
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
20 to 24
Strength to Weight: Bending, points 22
20 to 22
Thermal Diffusivity, mm2/s 13
10
Thermal Shock Resistance, points 24
17 to 20

Alloy Composition

Aluminum (Al), % 12.5 to 13.5
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 78.5 to 84
0
Iron (Fe), % 3.5 to 5.5
96.5 to 97.7
Manganese (Mn), % 0 to 2.0
0.75 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0