MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. N08135 Stainless Steel

C62500 bronze belongs to the copper alloys classification, while N08135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is N08135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.0
46
Fatigue Strength, MPa 460
220
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
80
Shear Strength, MPa 410
400
Tensile Strength: Ultimate (UTS), MPa 690
570
Tensile Strength: Yield (Proof), MPa 410
240

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 1050
1390
Specific Heat Capacity, J/kg-K 460
460
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 26
39
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 3.3
6.8
Embodied Energy, MJ/kg 55
94
Embodied Water, L/kg 410
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
210
Resilience: Unit (Modulus of Resilience), kJ/m3 750
140
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 22
19
Thermal Shock Resistance, points 24
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 12.5 to 13.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 78.5 to 84
0 to 0.7
Iron (Fe), % 3.5 to 5.5
30.2 to 42.3
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
33 to 38
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.2 to 0.8
Residuals, % 0 to 0.5
0