MakeItFrom.com
Menu (ESC)

C63000 Bronze vs. ACI-ASTM CN3M Steel

C63000 bronze belongs to the copper alloys classification, while ACI-ASTM CN3M steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C63000 bronze and the bottom bar is ACI-ASTM CN3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 7.9 to 15
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 660 to 790
500
Tensile Strength: Yield (Proof), MPa 330 to 390
190

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 39
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 3.5
5.9
Embodied Energy, MJ/kg 57
80
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 82
130
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 640
89
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22 to 26
17
Strength to Weight: Bending, points 20 to 23
17
Thermal Diffusivity, mm2/s 11
3.4
Thermal Shock Resistance, points 23 to 27
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 76.8 to 85
0
Iron (Fe), % 2.0 to 4.0
42.4 to 52.5
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
4.5 to 5.5
Nickel (Ni), % 4.0 to 5.5
23 to 27
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0