MakeItFrom.com
Menu (ESC)

C63000 Bronze vs. AISI 420 Stainless Steel

C63000 bronze belongs to the copper alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C63000 bronze and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 7.9 to 15
8.0 to 15
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 400 to 470
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 660 to 790
690 to 1720
Tensile Strength: Yield (Proof), MPa 330 to 390
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
620
Melting Completion (Liquidus), °C 1050
1510
Melting Onset (Solidus), °C 1040
1450
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 39
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
7.5
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.5
2.0
Embodied Energy, MJ/kg 57
28
Embodied Water, L/kg 390
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 82
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 640
380 to 4410
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22 to 26
25 to 62
Strength to Weight: Bending, points 20 to 23
22 to 41
Thermal Diffusivity, mm2/s 11
7.3
Thermal Shock Resistance, points 23 to 27
25 to 62

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0.15 to 0.4
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 76.8 to 85
0
Iron (Fe), % 2.0 to 4.0
82.3 to 87.9
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 4.0 to 5.5
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0