MakeItFrom.com
Menu (ESC)

C63000 Bronze vs. Grade CW6MC Nickel

C63000 bronze belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C63000 bronze and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 7.9 to 15
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 660 to 790
540
Tensile Strength: Yield (Proof), MPa 330 to 390
310

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 230
980
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 39
11
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
80
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 3.5
14
Embodied Energy, MJ/kg 57
200
Embodied Water, L/kg 390
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 82
130
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 640
240
Stiffness to Weight: Axial, points 7.9
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 22 to 26
18
Strength to Weight: Bending, points 20 to 23
17
Thermal Diffusivity, mm2/s 11
2.8
Thermal Shock Resistance, points 23 to 27
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 76.8 to 85
0
Iron (Fe), % 2.0 to 4.0
0 to 5.0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 4.0 to 5.5
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0