MakeItFrom.com
Menu (ESC)

C63000 Bronze vs. C96400 Copper-nickel

Both C63000 bronze and C96400 copper-nickel are copper alloys. They have 74% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C63000 bronze and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
140
Elongation at Break, % 7.9 to 15
25
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
51
Tensile Strength: Ultimate (UTS), MPa 660 to 790
490
Tensile Strength: Yield (Proof), MPa 330 to 390
260

Thermal Properties

Latent Heat of Fusion, J/g 230
240
Maximum Temperature: Mechanical, °C 230
260
Melting Completion (Liquidus), °C 1050
1240
Melting Onset (Solidus), °C 1040
1170
Specific Heat Capacity, J/kg-K 440
400
Thermal Conductivity, W/m-K 39
28
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
45
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 3.5
5.9
Embodied Energy, MJ/kg 57
87
Embodied Water, L/kg 390
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 82
100
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 640
250
Stiffness to Weight: Axial, points 7.9
8.6
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 22 to 26
15
Strength to Weight: Bending, points 20 to 23
16
Thermal Diffusivity, mm2/s 11
7.8
Thermal Shock Resistance, points 23 to 27
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 76.8 to 85
62.3 to 71.3
Iron (Fe), % 2.0 to 4.0
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.5
0 to 1.5
Nickel (Ni), % 4.0 to 5.5
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0 to 0.5