MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. 354.0 Aluminum

C63020 bronze belongs to the copper alloys classification, while 354.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C63020 bronze and the bottom bar is 354.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 6.8
2.4 to 3.0
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 44
27
Tensile Strength: Ultimate (UTS), MPa 1020
360 to 380
Tensile Strength: Yield (Proof), MPa 740
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 230
530
Maximum Temperature: Mechanical, °C 230
170
Melting Completion (Liquidus), °C 1070
600
Melting Onset (Solidus), °C 1020
550
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 40
130
Thermal Expansion, µm/m-K 18
21

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 3.6
7.8
Embodied Energy, MJ/kg 58
150
Embodied Water, L/kg 390
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
8.6 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
540 to 670
Stiffness to Weight: Axial, points 8.0
15
Stiffness to Weight: Bending, points 20
52
Strength to Weight: Axial, points 34
37 to 39
Strength to Weight: Bending, points 27
42 to 44
Thermal Diffusivity, mm2/s 11
52
Thermal Shock Resistance, points 35
17 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
87.3 to 89.4
Chromium (Cr), % 0 to 0.050
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
1.6 to 2.0
Iron (Fe), % 4.0 to 5.5
0 to 0.2
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.5
0 to 0.1
Nickel (Ni), % 4.2 to 6.0
0
Silicon (Si), % 0
8.6 to 9.4
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.3
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.15