MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. ACI-ASTM CA6N Steel

C63020 bronze belongs to the copper alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.8
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
75
Tensile Strength: Ultimate (UTS), MPa 1020
1080
Tensile Strength: Yield (Proof), MPa 740
1060

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
740
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
23
Thermal Expansion, µm/m-K 18
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
11
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.5
Embodied Energy, MJ/kg 58
35
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
180
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
2900
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 34
38
Strength to Weight: Bending, points 27
30
Thermal Diffusivity, mm2/s 11
6.1
Thermal Shock Resistance, points 35
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.050
10.5 to 12.5
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0
Iron (Fe), % 4.0 to 5.5
77.9 to 83.5
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 0.5
Nickel (Ni), % 4.2 to 6.0
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0