MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. AISI 321 Stainless Steel

C63020 bronze belongs to the copper alloys classification, while AISI 321 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is AISI 321 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.8
34 to 50
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 600
420 to 460
Tensile Strength: Ultimate (UTS), MPa 1020
590 to 690
Tensile Strength: Yield (Proof), MPa 740
220 to 350

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 230
870
Melting Completion (Liquidus), °C 1070
1430
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 18
17

Otherwise Unclassified Properties

Base Metal Price, % relative 29
16
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.2
Embodied Energy, MJ/kg 58
45
Embodied Water, L/kg 390
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
190 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
130 to 310
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 34
21 to 25
Strength to Weight: Bending, points 27
20 to 22
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 35
13 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.050
17 to 19
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0
Iron (Fe), % 4.0 to 5.5
65.3 to 74
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 4.2 to 6.0
9.0 to 12
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.7
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0