MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. AISI 442 Stainless Steel

C63020 bronze belongs to the copper alloys classification, while AISI 442 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is AISI 442 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.8
23
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 44
78
Shear Strength, MPa 600
370
Tensile Strength: Ultimate (UTS), MPa 1020
580
Tensile Strength: Yield (Proof), MPa 740
310

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 230
960
Melting Completion (Liquidus), °C 1070
1430
Melting Onset (Solidus), °C 1020
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
22
Thermal Expansion, µm/m-K 18
11

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.3
Embodied Energy, MJ/kg 58
32
Embodied Water, L/kg 390
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
250
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 34
21
Strength to Weight: Bending, points 27
20
Thermal Diffusivity, mm2/s 11
5.8
Thermal Shock Resistance, points 35
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.050
18 to 23
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0
Iron (Fe), % 4.0 to 5.5
74.1 to 82
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 4.2 to 6.0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0