MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. EN 1.0033 Steel

C63020 bronze belongs to the copper alloys classification, while EN 1.0033 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is EN 1.0033 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.8
17 to 32
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 600
200
Tensile Strength: Ultimate (UTS), MPa 1020
300 to 330
Tensile Strength: Yield (Proof), MPa 740
150 to 200

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1070
1470
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
53
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.6
1.4
Embodied Energy, MJ/kg 58
18
Embodied Water, L/kg 390
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
48 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
63 to 100
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 34
10 to 12
Strength to Weight: Bending, points 27
13 to 14
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 35
9.4 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0 to 0.11
Chromium (Cr), % 0 to 0.050
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0
Iron (Fe), % 4.0 to 5.5
98.8 to 100
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 0.7
Nickel (Ni), % 4.2 to 6.0
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0