MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. SAE-AISI 1146 Steel

C63020 bronze belongs to the copper alloys classification, while SAE-AISI 1146 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is SAE-AISI 1146 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.8
13 to 17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 44
72
Shear Strength, MPa 600
410 to 440
Tensile Strength: Ultimate (UTS), MPa 1020
670 to 730
Tensile Strength: Yield (Proof), MPa 740
360 to 630

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
51
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.4
Embodied Energy, MJ/kg 58
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
93 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
340 to 1050
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 34
24 to 26
Strength to Weight: Bending, points 27
22 to 23
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 35
20 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0.42 to 0.49
Chromium (Cr), % 0 to 0.050
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0
Iron (Fe), % 4.0 to 5.5
98.3 to 98.8
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0.7 to 1.0
Nickel (Ni), % 4.2 to 6.0
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0.080 to 0.13
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0