MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. C66200 Brass

Both C63020 bronze and C66200 brass are copper alloys. They have 79% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 6.8
8.0 to 15
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 44
42
Shear Strength, MPa 600
270 to 300
Tensile Strength: Ultimate (UTS), MPa 1020
450 to 520
Tensile Strength: Yield (Proof), MPa 740
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 230
180
Melting Completion (Liquidus), °C 1070
1070
Melting Onset (Solidus), °C 1020
1030
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 40
150
Thermal Expansion, µm/m-K 18
18

Otherwise Unclassified Properties

Base Metal Price, % relative 29
29
Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 58
43
Embodied Water, L/kg 390
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
760 to 1030
Stiffness to Weight: Axial, points 8.0
7.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 34
14 to 17
Strength to Weight: Bending, points 27
15 to 16
Thermal Diffusivity, mm2/s 11
45
Thermal Shock Resistance, points 35
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Chromium (Cr), % 0 to 0.050
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
86.6 to 91
Iron (Fe), % 4.0 to 5.5
0 to 0.050
Lead (Pb), % 0 to 0.030
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 4.2 to 6.0
0.3 to 1.0
Phosphorus (P), % 0
0.050 to 0.2
Tin (Sn), % 0 to 0.25
0.2 to 0.7
Zinc (Zn), % 0 to 0.3
6.5 to 12.9
Residuals, % 0 to 0.5
0 to 0.5