MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. N08535 Stainless Steel

C63020 bronze belongs to the copper alloys classification, while N08535 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is N08535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.8
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
80
Shear Strength, MPa 600
400
Tensile Strength: Ultimate (UTS), MPa 1020
570
Tensile Strength: Yield (Proof), MPa 740
240

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1070
1420
Melting Onset (Solidus), °C 1020
1370
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
13
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 3.6
6.3
Embodied Energy, MJ/kg 58
87
Embodied Water, L/kg 390
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
210
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
140
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 34
20
Strength to Weight: Bending, points 27
19
Thermal Diffusivity, mm2/s 11
3.3
Thermal Shock Resistance, points 35
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
24 to 27
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0 to 1.5
Iron (Fe), % 4.0 to 5.5
29.4 to 44.5
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 4.2 to 6.0
29 to 36.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0