MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. S32550 Stainless Steel

C63020 bronze belongs to the copper alloys classification, while S32550 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is S32550 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.8
21
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 44
80
Shear Strength, MPa 600
540
Tensile Strength: Ultimate (UTS), MPa 1020
860
Tensile Strength: Yield (Proof), MPa 740
620

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1020
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
20
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.8
Embodied Energy, MJ/kg 58
53
Embodied Water, L/kg 390
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
160
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
940
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 34
31
Strength to Weight: Bending, points 27
26
Thermal Diffusivity, mm2/s 11
4.4
Thermal Shock Resistance, points 35
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.050
24 to 27
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
1.5 to 2.5
Iron (Fe), % 4.0 to 5.5
57.2 to 67
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
2.9 to 3.9
Nickel (Ni), % 4.2 to 6.0
4.5 to 6.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0