MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. S42035 Stainless Steel

C63020 bronze belongs to the copper alloys classification, while S42035 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.8
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 600
390
Tensile Strength: Ultimate (UTS), MPa 1020
630
Tensile Strength: Yield (Proof), MPa 740
430

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
810
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
27
Thermal Expansion, µm/m-K 18
10

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.4
Embodied Energy, MJ/kg 58
34
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
100
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
460
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 34
22
Strength to Weight: Bending, points 27
21
Thermal Diffusivity, mm2/s 11
7.2
Thermal Shock Resistance, points 35
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.050
13.5 to 15.5
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0
Iron (Fe), % 4.0 to 5.5
78.1 to 85
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 4.2 to 6.0
1.0 to 2.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0.3 to 0.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0