MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. S44800 Stainless Steel

C63020 bronze belongs to the copper alloys classification, while S44800 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 6.8
23
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 44
82
Shear Strength, MPa 600
370
Tensile Strength: Ultimate (UTS), MPa 1020
590
Tensile Strength: Yield (Proof), MPa 740
450

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
17
Thermal Expansion, µm/m-K 18
11

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.8
Embodied Energy, MJ/kg 58
52
Embodied Water, L/kg 390
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
120
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
480
Stiffness to Weight: Axial, points 8.0
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 34
21
Strength to Weight: Bending, points 27
20
Thermal Diffusivity, mm2/s 11
4.6
Thermal Shock Resistance, points 35
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.050
28 to 30
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0 to 0.15
Iron (Fe), % 4.0 to 5.5
62.6 to 66.5
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 4.2 to 6.0
2.0 to 2.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0