MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. S64512 Stainless Steel

C63020 bronze belongs to the copper alloys classification, while S64512 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.8
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 600
700
Tensile Strength: Ultimate (UTS), MPa 1020
1140
Tensile Strength: Yield (Proof), MPa 740
890

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 230
750
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
28
Thermal Expansion, µm/m-K 18
10

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.3
Embodied Energy, MJ/kg 58
47
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
180
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
2020
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 34
40
Strength to Weight: Bending, points 27
31
Thermal Diffusivity, mm2/s 11
7.5
Thermal Shock Resistance, points 35
42

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0 to 0.050
11 to 12.5
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0
Iron (Fe), % 4.0 to 5.5
80.6 to 84.7
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 4.2 to 6.0
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.25
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0