MakeItFrom.com
Menu (ESC)

C63200 Bronze vs. EN 1.4513 Stainless Steel

C63200 bronze belongs to the copper alloys classification, while EN 1.4513 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C63200 bronze and the bottom bar is EN 1.4513 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17 to 18
26
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 390 to 440
310
Tensile Strength: Ultimate (UTS), MPa 640 to 710
480
Tensile Strength: Yield (Proof), MPa 310 to 350
240

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
880
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 35
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.5
Embodied Energy, MJ/kg 55
35
Embodied Water, L/kg 380
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 99
100
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 510
150
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 21 to 24
17
Strength to Weight: Bending, points 20 to 21
18
Thermal Diffusivity, mm2/s 9.6
6.8
Thermal Shock Resistance, points 22 to 24
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.7 to 9.5
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 78.8 to 82.6
0
Iron (Fe), % 3.5 to 4.3
77.7 to 83.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 1.2 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.4
Nickel (Ni), % 4.0 to 4.8
0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.8
Residuals, % 0 to 0.5
0