MakeItFrom.com
Menu (ESC)

C63200 Bronze vs. C42600 Brass

Both C63200 bronze and C42600 brass are copper alloys. They have 81% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C63200 bronze and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 17 to 18
1.1 to 40
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
42
Shear Strength, MPa 390 to 440
280 to 470
Tensile Strength: Ultimate (UTS), MPa 640 to 710
410 to 830
Tensile Strength: Yield (Proof), MPa 310 to 350
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 230
180
Melting Completion (Liquidus), °C 1060
1030
Melting Onset (Solidus), °C 1040
1010
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 35
110
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
25
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
26

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 3.4
2.9
Embodied Energy, MJ/kg 55
48
Embodied Water, L/kg 380
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 99
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 510
230 to 2970
Stiffness to Weight: Axial, points 7.9
7.1
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 21 to 24
13 to 27
Strength to Weight: Bending, points 20 to 21
14 to 23
Thermal Diffusivity, mm2/s 9.6
33
Thermal Shock Resistance, points 22 to 24
15 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.7 to 9.5
0
Copper (Cu), % 78.8 to 82.6
87 to 90
Iron (Fe), % 3.5 to 4.3
0.050 to 0.2
Lead (Pb), % 0 to 0.020
0 to 0.050
Manganese (Mn), % 1.2 to 2.0
0
Nickel (Ni), % 4.0 to 4.8
0.050 to 0.2
Phosphorus (P), % 0
0.020 to 0.050
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0 to 0.5
0 to 0.2