MakeItFrom.com
Menu (ESC)

C63200 Bronze vs. Z40101 Zinc

C63200 bronze belongs to the copper alloys classification, while Z40101 zinc belongs to the zinc alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C63200 bronze and the bottom bar is Z40101 zinc.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
87
Elongation at Break, % 17 to 18
44
Poisson's Ratio 0.34
0.25
Shear Modulus, GPa 44
35
Tensile Strength: Ultimate (UTS), MPa 640 to 710
130
Tensile Strength: Yield (Proof), MPa 310 to 350
110

Thermal Properties

Latent Heat of Fusion, J/g 230
110
Maximum Temperature: Mechanical, °C 230
90
Melting Completion (Liquidus), °C 1060
410
Melting Onset (Solidus), °C 1040
400
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 35
110
Thermal Expansion, µm/m-K 18
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
37

Otherwise Unclassified Properties

Base Metal Price, % relative 29
11
Density, g/cm3 8.3
6.6
Embodied Carbon, kg CO2/kg material 3.4
2.8
Embodied Energy, MJ/kg 55
53
Embodied Water, L/kg 380
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 99
56
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 510
69
Stiffness to Weight: Axial, points 7.9
7.4
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 21 to 24
5.7
Strength to Weight: Bending, points 20 to 21
8.9
Thermal Diffusivity, mm2/s 9.6
44
Thermal Shock Resistance, points 22 to 24
4.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.7 to 9.5
0 to 0.010
Cadmium (Cd), % 0
0 to 0.0050
Copper (Cu), % 78.8 to 82.6
0.080 to 0.4
Iron (Fe), % 3.5 to 4.3
0 to 0.010
Lead (Pb), % 0 to 0.020
0 to 0.010
Manganese (Mn), % 1.2 to 2.0
0
Nickel (Ni), % 4.0 to 4.8
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
0 to 0.0030
Titanium (Ti), % 0
0 to 0.020
Zinc (Zn), % 0
99.542 to 99.92
Residuals, % 0 to 0.5
0