MakeItFrom.com
Menu (ESC)

C63600 Bronze vs. EN 1.4029 Stainless Steel

C63600 bronze belongs to the copper alloys classification, while EN 1.4029 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C63600 bronze and the bottom bar is EN 1.4029 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30 to 66
10 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 320 to 360
440 to 550
Tensile Strength: Ultimate (UTS), MPa 410 to 540
700 to 930
Tensile Strength: Yield (Proof), MPa 150 to 260
410 to 740

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 210
750
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 980
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 57
30
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
7.0
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 45
28
Embodied Water, L/kg 340
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 290
89 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 300
440 to 1410
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 18
25 to 33
Strength to Weight: Bending, points 14 to 17
23 to 27
Thermal Diffusivity, mm2/s 16
8.1
Thermal Shock Resistance, points 15 to 20
26 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0.25 to 0.32
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 93 to 96.3
0
Iron (Fe), % 0 to 0.15
82.8 to 87.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.3
0 to 1.0
Sulfur (S), % 0
0.15 to 0.25
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0