MakeItFrom.com
Menu (ESC)

C63600 Bronze vs. EN AC-42200 Aluminum

C63600 bronze belongs to the copper alloys classification, while EN AC-42200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C63600 bronze and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 30 to 66
3.0 to 6.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 410 to 540
320
Tensile Strength: Yield (Proof), MPa 150 to 260
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 230
500
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 1030
610
Melting Onset (Solidus), °C 980
600
Specific Heat Capacity, J/kg-K 410
910
Thermal Conductivity, W/m-K 57
150
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
40
Electrical Conductivity: Equal Weight (Specific), % IACS 13
140

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 340
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 290
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 300
410 to 490
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 19
53
Strength to Weight: Axial, points 13 to 18
34 to 35
Strength to Weight: Bending, points 14 to 17
40 to 41
Thermal Diffusivity, mm2/s 16
66
Thermal Shock Resistance, points 15 to 20
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
91 to 93.1
Arsenic (As), % 0 to 0.15
0
Copper (Cu), % 93 to 96.3
0 to 0.050
Iron (Fe), % 0 to 0.15
0 to 0.19
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 0.7 to 1.3
6.5 to 7.5
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 0.070
Residuals, % 0 to 0.5
0 to 0.1