MakeItFrom.com
Menu (ESC)

C63600 Bronze vs. S32205 Stainless Steel

C63600 bronze belongs to the copper alloys classification, while S32205 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C63600 bronze and the bottom bar is S32205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30 to 66
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 42
80
Shear Strength, MPa 320 to 360
480
Tensile Strength: Ultimate (UTS), MPa 410 to 540
740
Tensile Strength: Yield (Proof), MPa 150 to 260
510

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 210
1070
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 980
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 57
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
18
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.7
Embodied Energy, MJ/kg 45
50
Embodied Water, L/kg 340
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 290
190
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 300
630
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 18
26
Strength to Weight: Bending, points 14 to 17
23
Thermal Diffusivity, mm2/s 16
4.0
Thermal Shock Resistance, points 15 to 20
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 23
Copper (Cu), % 93 to 96.3
0
Iron (Fe), % 0 to 0.15
63.7 to 70.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.15
4.5 to 6.5
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.7 to 1.3
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0