MakeItFrom.com
Menu (ESC)

C63800 Bronze vs. C87800 Brass

Both C63800 bronze and C87800 brass are copper alloys. They have 85% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C63800 bronze and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 7.9 to 41
25
Poisson's Ratio 0.34
0.33
Rockwell B Hardness 94 to 110
86
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 460 to 1010
590

Thermal Properties

Latent Heat of Fusion, J/g 240
260
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1030
920
Melting Onset (Solidus), °C 1000
820
Specific Heat Capacity, J/kg-K 410
410
Thermal Conductivity, W/m-K 40
28
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
27
Density, g/cm3 8.6
8.3
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 330
300

Common Calculations

Stiffness to Weight: Axial, points 7.4
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 15 to 33
20
Strength to Weight: Bending, points 15 to 26
19
Thermal Diffusivity, mm2/s 11
8.3
Thermal Shock Resistance, points 17 to 36
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.1
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 92.4 to 95.8
80 to 84.2
Iron (Fe), % 0 to 0.2
0 to 0.15
Lead (Pb), % 0 to 0.050
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.1
0 to 0.15
Nickel (Ni), % 0 to 0.2
0 to 0.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 1.5 to 2.1
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.8
12 to 16
Residuals, % 0 to 0.5
0 to 0.5