MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. EN 1.4104 Stainless Steel

C64200 bronze belongs to the copper alloys classification, while EN 1.4104 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is EN 1.4104 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 35
11 to 23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 330 to 390
400 to 450
Tensile Strength: Ultimate (UTS), MPa 540 to 640
630 to 750
Tensile Strength: Yield (Proof), MPa 230 to 320
350 to 560

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 210
860
Melting Completion (Liquidus), °C 1000
1440
Melting Onset (Solidus), °C 980
1390
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 45
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
8.5
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.2
Embodied Energy, MJ/kg 50
30
Embodied Water, L/kg 370
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
77 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
310 to 800
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
23 to 27
Strength to Weight: Bending, points 18 to 20
21 to 24
Thermal Diffusivity, mm2/s 13
6.7
Thermal Shock Resistance, points 20 to 23
22 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
78.8 to 84.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0.2 to 0.6
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.2
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0