MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. EN 1.4112 Stainless Steel

C64200 bronze belongs to the copper alloys classification, while EN 1.4112 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is EN 1.4112 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 35
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 330 to 390
470
Tensile Strength: Ultimate (UTS), MPa 540 to 640
750
Tensile Strength: Yield (Proof), MPa 230 to 320
430

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 210
910
Melting Completion (Liquidus), °C 1000
1430
Melting Onset (Solidus), °C 980
1390
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 45
15
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 50
37
Embodied Water, L/kg 370
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
480
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
27
Strength to Weight: Bending, points 18 to 20
24
Thermal Diffusivity, mm2/s 13
4.1
Thermal Shock Resistance, points 20 to 23
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0.85 to 1.0
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
76.6 to 81.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Vanadium (V), % 0
0.070 to 0.12
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0