MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. C11100 Copper

Both C64200 bronze and C11100 copper are copper alloys. They have a moderately high 90% of their average alloy composition in common.

For each property being compared, the top bar is C64200 bronze and the bottom bar is C11100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 14 to 35
1.5
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
44
Shear Strength, MPa 330 to 390
230
Tensile Strength: Ultimate (UTS), MPa 540 to 640
460
Tensile Strength: Yield (Proof), MPa 230 to 320
420

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 1000
1080
Melting Onset (Solidus), °C 980
1070
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 45
390
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.3
9.0
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 50
41
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
6.6
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
750
Stiffness to Weight: Axial, points 7.5
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18 to 21
14
Strength to Weight: Bending, points 18 to 20
15
Thermal Diffusivity, mm2/s 13
110
Thermal Shock Resistance, points 20 to 23
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Copper (Cu), % 88.2 to 92.2
99.9 to 100
Iron (Fe), % 0 to 0.3
0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 1.5 to 2.2
0
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0 to 0.1