MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. C71580 Copper-nickel

Both C64200 bronze and C71580 copper-nickel are copper alloys. They have 69% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 14 to 35
40
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
51
Shear Strength, MPa 330 to 390
230
Tensile Strength: Ultimate (UTS), MPa 540 to 640
330
Tensile Strength: Yield (Proof), MPa 230 to 320
110

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 210
260
Melting Completion (Liquidus), °C 1000
1180
Melting Onset (Solidus), °C 980
1120
Specific Heat Capacity, J/kg-K 430
400
Thermal Conductivity, W/m-K 45
39
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
41
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 3.0
5.1
Embodied Energy, MJ/kg 50
74
Embodied Water, L/kg 370
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
100
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
47
Stiffness to Weight: Axial, points 7.5
8.5
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 18 to 21
10
Strength to Weight: Bending, points 18 to 20
12
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 20 to 23
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.070
Copper (Cu), % 88.2 to 92.2
65.5 to 71
Iron (Fe), % 0 to 0.3
0 to 0.5
Lead (Pb), % 0 to 0.050
0 to 0.050
Manganese (Mn), % 0 to 0.1
0 to 0.3
Nickel (Ni), % 0 to 0.25
29 to 33
Silicon (Si), % 1.5 to 2.2
0
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0 to 0.050
Residuals, % 0 to 0.5
0 to 0.5