MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. N07752 Nickel

C64200 bronze belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 35
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 330 to 390
710
Tensile Strength: Ultimate (UTS), MPa 540 to 640
1120
Tensile Strength: Yield (Proof), MPa 230 to 320
740

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 210
960
Melting Completion (Liquidus), °C 1000
1380
Melting Onset (Solidus), °C 980
1330
Specific Heat Capacity, J/kg-K 430
460
Thermal Conductivity, W/m-K 45
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
60
Density, g/cm3 8.3
8.4
Embodied Carbon, kg CO2/kg material 3.0
10
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 370
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
220
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
1450
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 18 to 21
37
Strength to Weight: Bending, points 18 to 20
29
Thermal Diffusivity, mm2/s 13
3.2
Thermal Shock Resistance, points 20 to 23
34

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0.4 to 1.0
Arsenic (As), % 0 to 0.15
0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 88.2 to 92.2
0 to 0.5
Iron (Fe), % 0 to 0.3
5.0 to 9.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.25
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 1.5 to 2.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.5
0 to 0.050
Residuals, % 0 to 0.5
0