MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. R30816 Cobalt

C64200 bronze belongs to the copper alloys classification, while R30816 cobalt belongs to the cobalt alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is R30816 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 14 to 35
23
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 42
81
Tensile Strength: Ultimate (UTS), MPa 540 to 640
1020
Tensile Strength: Yield (Proof), MPa 230 to 320
460

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1000
1540
Melting Onset (Solidus), °C 980
1460
Specific Heat Capacity, J/kg-K 430
420
Thermal Conductivity, W/m-K 45
13
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Density, g/cm3 8.3
9.1
Embodied Carbon, kg CO2/kg material 3.0
20
Embodied Energy, MJ/kg 50
320
Embodied Water, L/kg 370
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
190
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
510
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 18 to 21
31
Strength to Weight: Bending, points 18 to 20
25
Thermal Diffusivity, mm2/s 13
3.3
Thermal Shock Resistance, points 20 to 23
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0.32 to 0.42
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
40 to 49.8
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
1.0 to 2.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.25
19 to 21
Niobium (Nb), % 0
3.5 to 4.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
3.5 to 4.5
Tin (Sn), % 0 to 0.2
0
Tungsten (W), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0