MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. S31060 Stainless Steel

C64200 bronze belongs to the copper alloys classification, while S31060 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 35
46
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 42
78
Shear Strength, MPa 330 to 390
480
Tensile Strength: Ultimate (UTS), MPa 540 to 640
680
Tensile Strength: Yield (Proof), MPa 230 to 320
310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 210
1080
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 980
1370
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 45
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
18
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.4
Embodied Energy, MJ/kg 50
48
Embodied Water, L/kg 370
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
260
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
250
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
24
Strength to Weight: Bending, points 18 to 20
22
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 20 to 23
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.25
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.2
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0