MakeItFrom.com
Menu (ESC)

C64210 Bronze vs. ACI-ASTM CB7Cu-2 Steel

C64210 bronze belongs to the copper alloys classification, while ACI-ASTM CB7Cu-2 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C64210 bronze and the bottom bar is ACI-ASTM CB7Cu-2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 35
5.7 to 11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Tensile Strength: Ultimate (UTS), MPa 570
960 to 1350
Tensile Strength: Yield (Proof), MPa 290
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 990
1380
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 48
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 49
38
Embodied Water, L/kg 360
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 360
1510 to 3600
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
34 to 48
Strength to Weight: Bending, points 18
28 to 35
Thermal Diffusivity, mm2/s 13
4.6
Thermal Shock Resistance, points 21
32 to 45

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 6.3 to 7.0
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 89 to 92.2
2.5 to 3.2
Iron (Fe), % 0 to 0.3
73.6 to 79
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 0.7
Nickel (Ni), % 0 to 0.25
4.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 1.5 to 2.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0