MakeItFrom.com
Menu (ESC)

C64210 Bronze vs. ASTM Grade LC4 Steel

C64210 bronze belongs to the copper alloys classification, while ASTM grade LC4 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64210 bronze and the bottom bar is ASTM grade LC4 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 35
27
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 570
570
Tensile Strength: Yield (Proof), MPa 290
310

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 210
410
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 48
49
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
4.6
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.8
Embodied Energy, MJ/kg 49
24
Embodied Water, L/kg 360
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
130
Resilience: Unit (Modulus of Resilience), kJ/m3 360
260
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 21
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 6.3 to 7.0
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 89 to 92.2
0
Iron (Fe), % 0 to 0.3
93.4 to 95.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.8
Nickel (Ni), % 0 to 0.25
4.0 to 5.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.0
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0