MakeItFrom.com
Menu (ESC)

C64210 Bronze vs. EN 1.1147 Steel

C64210 bronze belongs to the copper alloys classification, while EN 1.1147 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C64210 bronze and the bottom bar is EN 1.1147 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 35
12 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 380
280
Tensile Strength: Ultimate (UTS), MPa 570
390 to 470
Tensile Strength: Yield (Proof), MPa 290
280 to 370

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 48
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 49
18
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
40 to 73
Resilience: Unit (Modulus of Resilience), kJ/m3 360
210 to 370
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19
14 to 17
Strength to Weight: Bending, points 18
15 to 17
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 21
12 to 15

Alloy Composition

Aluminum (Al), % 6.3 to 7.0
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0.15 to 0.19
Copper (Cu), % 89 to 92.2
0 to 0.25
Iron (Fe), % 0 to 0.3
98.3 to 99.25
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.9
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.5 to 2.0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0