MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. ACI-ASTM CD4MCuN Steel

C64800 bronze belongs to the copper alloys classification, while ACI-ASTM CD4MCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is ACI-ASTM CD4MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
18
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 640
770
Tensile Strength: Yield (Proof), MPa 630
550

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
17
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
18
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 43
49
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
760
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
28
Strength to Weight: Bending, points 19
24
Thermal Diffusivity, mm2/s 75
4.5
Thermal Shock Resistance, points 23
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.090
24.5 to 26.5
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
2.7 to 3.3
Iron (Fe), % 0 to 1.0
59.5 to 66.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.7 to 2.3
Nickel (Ni), % 0 to 0.5
4.7 to 6.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0