MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. ACI-ASTM CH10 Steel

C64800 bronze belongs to the copper alloys classification, while ACI-ASTM CH10 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is ACI-ASTM CH10 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
34
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 640
540
Tensile Strength: Yield (Proof), MPa 630
230

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1410
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 43
53
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
140
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 75
3.9
Thermal Shock Resistance, points 23
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.090
22 to 26
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
54.8 to 66
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
12 to 15
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0