MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. EN 1.4405 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while EN 1.4405 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is EN 1.4405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 640
860
Tensile Strength: Yield (Proof), MPa 630
610

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 43
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
950
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
31
Strength to Weight: Bending, points 19
26
Thermal Diffusivity, mm2/s 75
4.6
Thermal Shock Resistance, points 23
29

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.090
15 to 17
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
73.6 to 80.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.7 to 1.5
Nickel (Ni), % 0 to 0.5
4.0 to 6.0
Phosphorus (P), % 0 to 0.5
0 to 0.035
Silicon (Si), % 0.2 to 1.0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0