MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. Nickel 601

C64800 bronze belongs to the copper alloys classification, while nickel 601 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is nickel 601.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
10 to 38
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 380
440 to 530
Tensile Strength: Ultimate (UTS), MPa 640
660 to 890
Tensile Strength: Yield (Proof), MPa 630
290 to 800

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1410
Melting Onset (Solidus), °C 1030
1360
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
11
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 66
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
49
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 43
110
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
86 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
210 to 1630
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 20
22 to 30
Strength to Weight: Bending, points 19
20 to 25
Thermal Diffusivity, mm2/s 75
2.8
Thermal Shock Resistance, points 23
17 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
1.0 to 1.7
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.090
21 to 25
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0 to 1.0
Iron (Fe), % 0 to 1.0
7.7 to 20
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.5
58 to 63
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0.2 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0