MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. SAE-AISI 4340 Steel

C64800 bronze belongs to the copper alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 380
430 to 770
Tensile Strength: Ultimate (UTS), MPa 640
690 to 1280
Tensile Strength: Yield (Proof), MPa 630
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 66
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
3.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 43
22
Embodied Water, L/kg 310
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
590 to 3490
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 20
24 to 45
Strength to Weight: Bending, points 19
22 to 33
Thermal Diffusivity, mm2/s 75
12
Thermal Shock Resistance, points 23
20 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0 to 0.090
0.7 to 0.9
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
95.1 to 96.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.5
1.7 to 2.0
Phosphorus (P), % 0 to 0.5
0 to 0.035
Silicon (Si), % 0.2 to 1.0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0