MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. C70400 Copper-nickel

Both C64800 bronze and C70400 copper-nickel are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
45
Tensile Strength: Ultimate (UTS), MPa 640
300 to 310
Tensile Strength: Yield (Proof), MPa 630
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1090
1120
Melting Onset (Solidus), °C 1030
1060
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
64
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
14
Electrical Conductivity: Equal Weight (Specific), % IACS 66
14

Otherwise Unclassified Properties

Base Metal Price, % relative 33
32
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 1680
38 to 220
Stiffness to Weight: Axial, points 7.4
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 20
9.3 to 9.8
Strength to Weight: Bending, points 19
11 to 12
Thermal Diffusivity, mm2/s 75
18
Thermal Shock Resistance, points 23
10 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Chromium (Cr), % 0 to 0.090
0
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
89.8 to 93.6
Iron (Fe), % 0 to 1.0
1.3 to 1.7
Lead (Pb), % 0 to 0.050
0 to 0.050
Manganese (Mn), % 0
0.3 to 0.8
Nickel (Ni), % 0 to 0.5
4.8 to 6.2
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0.2 to 1.0
0
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0 to 1.0
Residuals, % 0 to 0.5
0 to 0.5