MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. C96900 Copper-nickel

Both C64800 bronze and C96900 copper-nickel are copper alloys. They have 77% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 8.0
4.5
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
45
Tensile Strength: Ultimate (UTS), MPa 640
850
Tensile Strength: Yield (Proof), MPa 630
830

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1090
1060
Melting Onset (Solidus), °C 1030
960
Specific Heat Capacity, J/kg-K 390
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 66
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 33
39
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.7
4.6
Embodied Energy, MJ/kg 43
72
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
38
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
2820
Stiffness to Weight: Axial, points 7.4
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 20
27
Strength to Weight: Bending, points 19
23
Thermal Shock Resistance, points 23
30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Chromium (Cr), % 0 to 0.090
0
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
73.6 to 78
Iron (Fe), % 0 to 1.0
0 to 0.5
Lead (Pb), % 0 to 0.050
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0 to 0.5
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0.2 to 1.0
0 to 0.3
Tin (Sn), % 0 to 0.5
7.5 to 8.5
Zinc (Zn), % 0 to 0.5
0 to 0.5
Residuals, % 0 to 0.5
0 to 0.5