MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. N08800 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while N08800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
4.5 to 34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 380
340 to 580
Tensile Strength: Ultimate (UTS), MPa 640
500 to 1000
Tensile Strength: Yield (Proof), MPa 630
190 to 830

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1390
Melting Onset (Solidus), °C 1030
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
12
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 66
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 33
30
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.3
Embodied Energy, MJ/kg 43
76
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
42 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
96 to 1740
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 20
18 to 35
Strength to Weight: Bending, points 19
18 to 28
Thermal Diffusivity, mm2/s 75
3.0
Thermal Shock Resistance, points 23
13 to 25

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.090
19 to 23
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0 to 0.75
Iron (Fe), % 0 to 1.0
39.5 to 50.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.5
30 to 35
Phosphorus (P), % 0 to 0.5
0 to 0.045
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0