MakeItFrom.com
Menu (ESC)

C65100 Bronze vs. 1435 Aluminum

C65100 bronze belongs to the copper alloys classification, while 1435 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C65100 bronze and the bottom bar is 1435 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 2.4 to 50
4.1 to 32
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Shear Strength, MPa 200 to 350
54 to 87
Tensile Strength: Ultimate (UTS), MPa 280 to 560
81 to 150
Tensile Strength: Yield (Proof), MPa 95 to 440
23 to 130

Thermal Properties

Latent Heat of Fusion, J/g 230
400
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1060
650
Melting Onset (Solidus), °C 1030
640
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 57
230
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
60
Electrical Conductivity: Equal Weight (Specific), % IACS 12
200

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.0
Density, g/cm3 8.8
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 300
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
5.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 39 to 820
3.8 to 110
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 8.7 to 18
8.3 to 15
Strength to Weight: Bending, points 11 to 17
15 to 23
Thermal Diffusivity, mm2/s 16
93
Thermal Shock Resistance, points 9.5 to 19
3.6 to 6.7

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
99.35 to 99.7
Copper (Cu), % 94.5 to 99.2
0 to 0.020
Iron (Fe), % 0 to 0.8
0.3 to 0.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.7
0 to 0.050
Silicon (Si), % 0.8 to 2.0
0 to 0.15
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 0 to 1.5
0 to 0.1
Residuals, % 0 to 0.5
0