MakeItFrom.com
Menu (ESC)

C65100 Bronze vs. CC382H Copper-nickel

Both C65100 bronze and CC382H copper-nickel are copper alloys. They have 67% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C65100 bronze and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
140
Elongation at Break, % 2.4 to 50
20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
53
Tensile Strength: Ultimate (UTS), MPa 280 to 560
490
Tensile Strength: Yield (Proof), MPa 95 to 440
290

Thermal Properties

Latent Heat of Fusion, J/g 230
240
Maximum Temperature: Mechanical, °C 200
260
Melting Completion (Liquidus), °C 1060
1180
Melting Onset (Solidus), °C 1030
1120
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 57
30
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
41
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 2.6
5.2
Embodied Energy, MJ/kg 41
76
Embodied Water, L/kg 300
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
85
Resilience: Unit (Modulus of Resilience), kJ/m3 39 to 820
290
Stiffness to Weight: Axial, points 7.3
8.8
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.7 to 18
15
Strength to Weight: Bending, points 11 to 17
16
Thermal Diffusivity, mm2/s 16
8.2
Thermal Shock Resistance, points 9.5 to 19
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 94.5 to 99.2
62.8 to 68.4
Iron (Fe), % 0 to 0.8
0.5 to 1.0
Lead (Pb), % 0 to 0.050
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.7
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0.8 to 2.0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 1.5
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.5
0