MakeItFrom.com
Menu (ESC)

C65100 Bronze vs. C89320 Bronze

Both C65100 bronze and C89320 bronze are copper alloys. They have 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C65100 bronze and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.4 to 50
17
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 280 to 560
270
Tensile Strength: Yield (Proof), MPa 95 to 440
140

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1060
1050
Melting Onset (Solidus), °C 1030
930
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 57
56
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
15
Electrical Conductivity: Equal Weight (Specific), % IACS 12
15

Otherwise Unclassified Properties

Base Metal Price, % relative 30
37
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.5
Embodied Energy, MJ/kg 41
56
Embodied Water, L/kg 300
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
38
Resilience: Unit (Modulus of Resilience), kJ/m3 39 to 820
93
Stiffness to Weight: Axial, points 7.3
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.7 to 18
8.5
Strength to Weight: Bending, points 11 to 17
10
Thermal Diffusivity, mm2/s 16
17
Thermal Shock Resistance, points 9.5 to 19
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Copper (Cu), % 94.5 to 99.2
87 to 91
Iron (Fe), % 0 to 0.8
0 to 0.2
Lead (Pb), % 0 to 0.050
0 to 0.090
Manganese (Mn), % 0 to 0.7
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.3
Silicon (Si), % 0.8 to 2.0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0 to 1.5
0 to 1.0
Residuals, % 0 to 0.5
0 to 0.5