MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. AISI 440A Stainless Steel

C65400 bronze belongs to the copper alloys classification, while AISI 440A stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is AISI 440A stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.6 to 47
5.0 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 350 to 530
450 to 1040
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
730 to 1790
Tensile Strength: Yield (Proof), MPa 170 to 910
420 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 200
760
Melting Completion (Liquidus), °C 1020
1480
Melting Onset (Solidus), °C 960
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 36
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.0
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 45
31
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
87 to 120
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 34
26 to 65
Strength to Weight: Bending, points 16 to 27
23 to 43
Thermal Diffusivity, mm2/s 10
6.2
Thermal Shock Resistance, points 18 to 39
26 to 65

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0.010 to 0.12
16 to 18
Copper (Cu), % 93.8 to 96.1
0
Iron (Fe), % 0
78.4 to 83.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.2 to 1.9
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0