MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. ASTM B817 Type I

C65400 bronze belongs to the copper alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 2.6 to 47
4.0 to 13
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
770 to 960
Tensile Strength: Yield (Proof), MPa 170 to 910
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 200
340
Melting Completion (Liquidus), °C 1020
1600
Melting Onset (Solidus), °C 960
1550
Specific Heat Capacity, J/kg-K 400
560
Thermal Conductivity, W/m-K 36
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 8.7
4.4
Embodied Carbon, kg CO2/kg material 2.8
38
Embodied Energy, MJ/kg 45
610
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
2310 to 3540
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 16 to 34
48 to 60
Strength to Weight: Bending, points 16 to 27
42 to 49
Thermal Diffusivity, mm2/s 10
2.9
Thermal Shock Resistance, points 18 to 39
54 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 0.010 to 0.12
0
Copper (Cu), % 93.8 to 96.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 2.7 to 3.4
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Tin (Sn), % 1.2 to 1.9
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0 to 0.4